

Process Equipment Design Laboratory AUTh Energy efficiency in Buildings

Prof. Agis Papadopoulos

Dr. Effrosyni Giama
On behalf of PEDL RESEARCH TEAM

fgiama@auth.gr

The European Green Deal

- Strong linkage between energy and environmental policies
- The EU should be climate neutral by 2050
- Reaching this target will require action by all sectors of our economy, including
 - investing in environmentally-friendly technologies
 - supporting industry to innovate
 - rolling out cleaner, cheaper and healthier forms of private and public transport
 - decarbonising the energy sector
 - ensuring buildings are more energy efficient
 - working with international partners to improve global environmental standards

Key pillars in EU Energy Policy for Buildings

- Energy Efficiency
- Renewable Energy
- Energy Performance
- Decarbonisation

	Clean energy for all Europeans package - legislative process					
		European Commission Proposal	EU Inter- institutional Negotiations	European Parliament Adoption	Council Adoption	Official Journal Publication
	Energy Performance in Buildings	30/11/2016	Political Agreement	17/04/2018	14/05/2018	19/06/2018 - Directive (EU) 2018/844
	Renewable Energy	30/11/2016	<u>Political</u> <u>Agreement</u>	13/11/2018	04/12/2008	21/12/2018 - Directive (EU) 2018/2001
	Energy Efficiency	<u>30/11/2016</u>	<u>Political</u> <u>Agreement</u>	13/11/2018	04/12/2018	21/12/2018 - Directive (EU) 2018/2002
	Governance of the Energy Union	30/11/2016	Political Agreement	13/11/2018	04/12/2018	21/12/2018 - <u>Regulation</u> (EU) 2018/1999
	Electricity Regulation	30/11/2016	Political Agreement	26/03/2019	22/05/2019	14/06/2019 - Regulation (EU) 2019/943
	Electricity Directive	30/11/2016	<u>Political</u> <u>Agreement</u>	<u>26/03/2019</u>	22/05/2019	14/06/2019 - Directive (EU) 2019/944
	Risk Preparedness	<u>30/11/2016</u>	Political Agreement	26/03/2019	22/05/2019	14/06/2019 - Regulation (EU) 2019/941
	ACER	30/11/2016	Political Agreement	26/03/2019	22/05/2019	14/06/2019 - Regulation (EU) 2019/942

LIFE VISIONS

Renewable energy – national targets

National targets for raising the share of renewables in energy consumption by 2030 and 2050, under the Renewable Energy Directive.

Promoting "green" growth and jobs

Tackling the climate and energy challenge contributes to the creation of jobs, the generation of "green" growth and a strengthening of EU's competitiveness.

It is estimated that meeting the 20% renewable energy target could have a net effect of creating around 417,000 additional jobs, while getting on track to achieve the 20% energy efficiency boosts net employment by some 400,000 jobs. Funding programs promoting energy investments.

Energy efficiency

Measures for increasing energy efficiency are set out in the:

- Energy Efficiency Plan
- Energy Efficiency Directive
- Standarization
- National Laws

Energy Efficiency Plan

The policies to improve energy efficiency in Europe include:

- EU countries making energy efficient renovations of buildings owned and occupied by central governments per year
- mandatory and voluntary energy efficiency and environmental certificates for buildings.
- the preparation of **National Energy Efficiency Action Plans** every three years by EU countries

Energy Efficiency Plan

- minimum energy efficiency standards and labelling for a variety of products such as boilers, household appliances, lighting and televisions (EcoDesign)
- smart metering for electricity and energy systems
- large companies conducting energy audits at least every four years
- protecting the rights of consumers to receive easy and free access to data on real-time and historical energy consumption, monitoring, KPIs.

Reduce energy demand

Microclimate

Building's envelope

Building's use

Built environment

Greening the area

Building's geometry

Organization - zones

Climate

Water elements

Thermal insulation

Electric equipment

Orientation

Cool materials

Green roof

Users - Awareness

Built-up density

Construction materials

HVAC systems

Surroundingsshading

Passive systems

BMS systems

Shading

Methodology in brief in VISIONS PROJECT

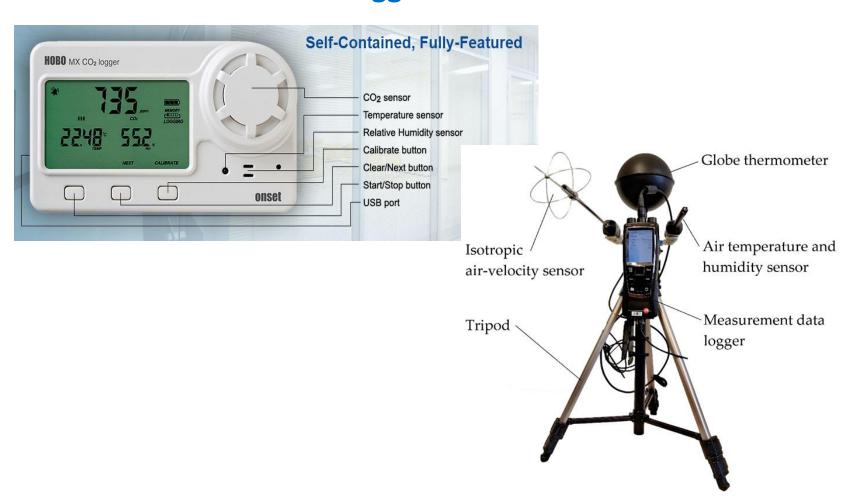
Measurements – Simulations in Demo Houses and in real scale application in Naval Academy

Simulations with DesignBuilder and Contam

- Energy consumption
- CO₂ emissions
- Thermal comfort

The target was to identify the correlation of ventilation rates and photocatalysis (ventilation is related to energy consumption).

Indirect reduction of energy consumption because of the ventilation rate reduction.


Indoor conditions measurement equipment

System	Measurements	Measurement equipment			
DEMO HOUSES	Air temperature	Comfort and air quality conditions			
	Relative Humidity	using testo 480 and the necessary sensor probes (temperature, radiant			
	Air velocity	temperature, relative humidity, CO2,			
	Radiant	air velocity, pmv/ppd)			
	temperature	• HOBO MX1102 (temperature, relative			
	PMV/PPD	humidity, CO2).			
	CO ₂	The installation and methodology is			
		based on the international standards ISO			
		7726:1998 and ASHRAE 55			

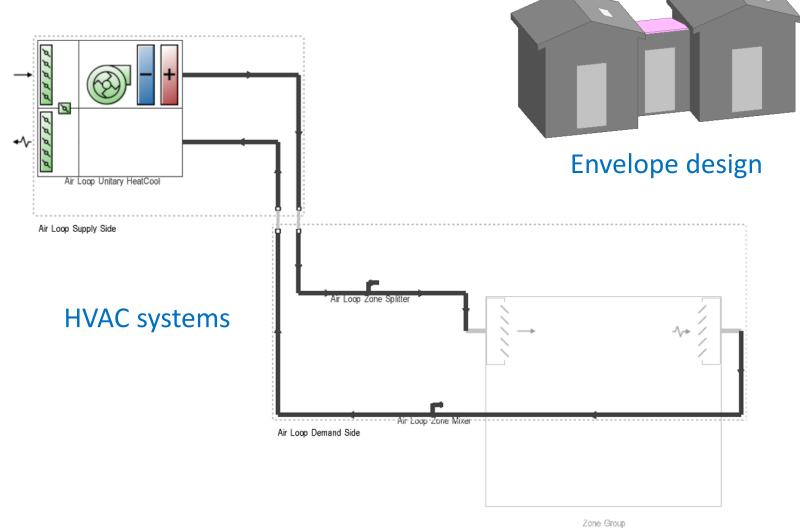
Indoor conditions data loggers

A. Simulation - Demo Houses

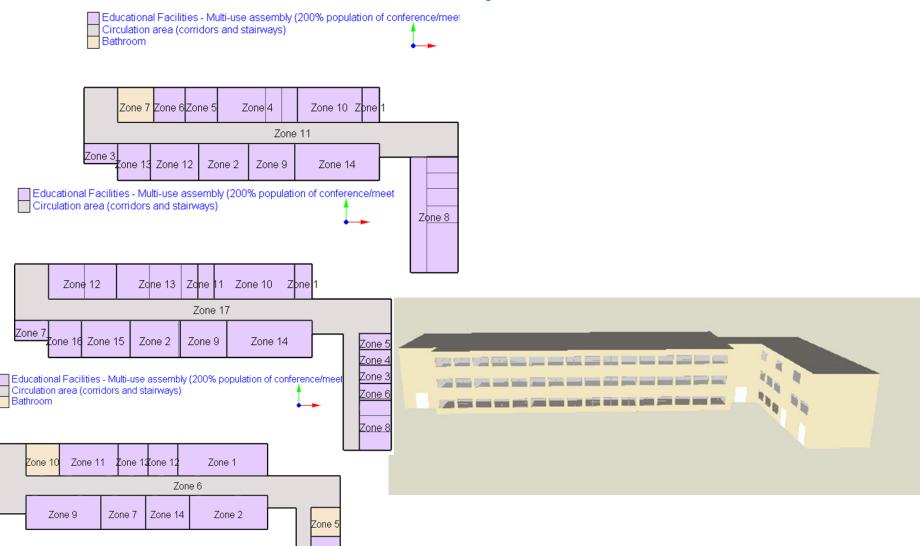
Parameters:

- Mechanical ventilation (ASHRAE 62.1)
- Natural ventilation
- Photocatalysis

Output data:

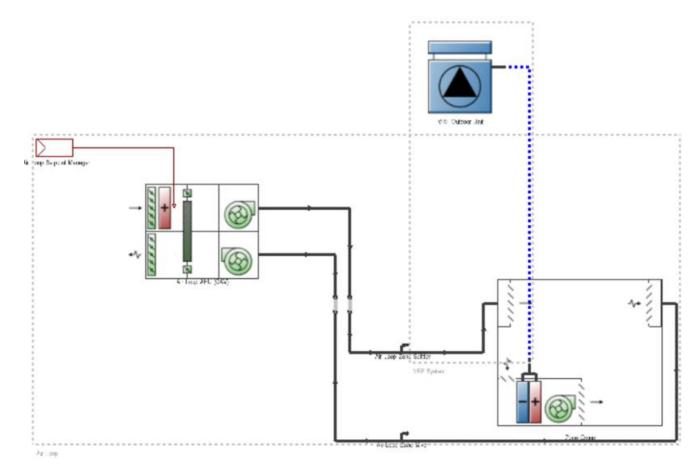

- Energy consumption
- CO₂ emissions
- NOx emissions

A. Simulation - Demo Houses

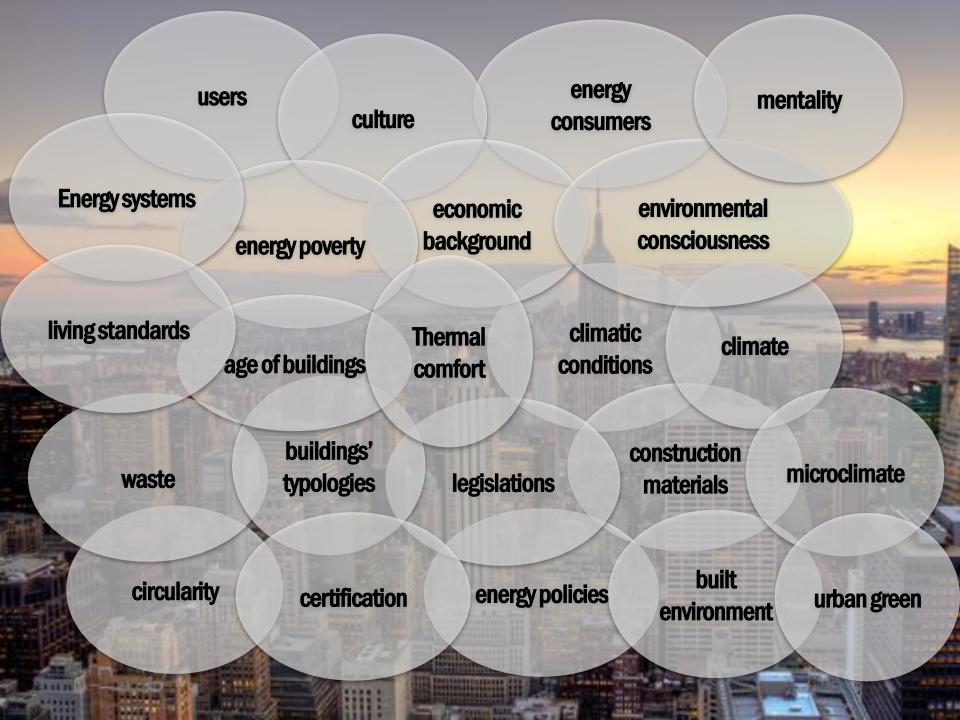


B. Simulation – Naval Academy

Zone 4


Zone 3 Zone 8

LIFE VISIONS



B. Simulation – Naval Academy

Naval academy-VRF (Variable Refrigerant Flow) system simulation

THANK YOU!

https://lifevisions.gr/

