

Process Equipment Design Laboratory AUTh Energy efficiency of Demo Houses and Naval Academy: Simulation Results

Prof. Agis Papadopoulos

Dr. Effrosyni Giama On behalf of PEDL RESEARCH TEAM

fgiama@auth.gr

LIFE VISIONS

The European Green Deal

- Strong linkage between energy and environmental policies
- The EU should be climate neutral by 2050
- Reaching this target will require action by all sectors of our economy, including
 - investing in environmentally-friendly technologies
 - supporting industry to innovate
 - rolling out cleaner, cheaper and healthier forms of private and public transport
 - decarbonising the energy sector
 - ensuring buildings are more energy efficient
 - working with international partners to improve global environmental standards

LIFE VISIONS

Key pillars in EU Energy Policy for Buildings

- Energy Efficiency
- Renewable Energy
- Energy Performance
- Decarbonisation

PFN
Process Equipment Design Laboratory

Clean energy for all Europeans package - legislative process							
		European Commission Proposal	EU Inter- institutional Negotiations	European Parliament Adoption	Council Adoption	Official Journal Publication	
Energy Performar Buildings		<u>30/11/2016</u>	Political Agreement	<u>17/04/2018</u>	<u>14/05/2018</u>	<u>19/06/2018 -</u> Directive (EU) <u>2018/844</u>	
Renewabl Energy	le	<u>30/11/2016</u>	Political Agreement	<u>13/11/2018</u>	<u>04/12/2008</u>	<u>21/12/2018 -</u> <u>Directive (EU)</u> <u>2018/2001</u>	
Energy Efficiency	,	<u>30/11/2016</u>	Political Agreement	<u>13/11/2018</u>	<u>04/12/2018</u>	<u>21/12/2018 -</u> Directive (EU) <u>2018/2002</u>	
Governan the Energ Union		<u>30/11/2016</u>	Political Agreement	<u>13/11/2018</u>	04/12/2018	<u>21/12/2018 -</u> <u>Regulation</u> <u>(EU)</u> <u>2018/1999</u>	
Electricity Regulatio		<u>30/11/2016</u>	Political Agreement	<u>26/03/2019</u>	<u>22/05/2019</u>	<u>14/06/2019 -</u> <u>Regulation</u> <u>(EU)</u> <u>2019/943</u>	
Electricity Directive	/	<u>30/11/2016</u>	Political Agreement	<u>26/03/2019</u>	<u>22/05/2019</u>	<u>14/06/2019 -</u> <u>Directive (EU)</u> <u>2019/944</u>	
Risk Preparedr	ness	<u>30/11/2016</u>	Political Agreement	<u>26/03/2019</u>	<u>22/05/2019</u>	<u>14/06/2019 -</u> <u>Regulation</u> (EU) <u>2019/941</u>	
ACER		<u>30/11/2016</u>	<u>Political</u> <u>Agreement</u>	<u>26/03/2019</u>	<u>22/05/2019</u>	<u>14/06/2019 -</u> <u>Regulation</u> (EU) <u>2019/942</u>	

Methodology in brief

Measurements – Simulations in Demo Houses and in real scale application in Naval Academy

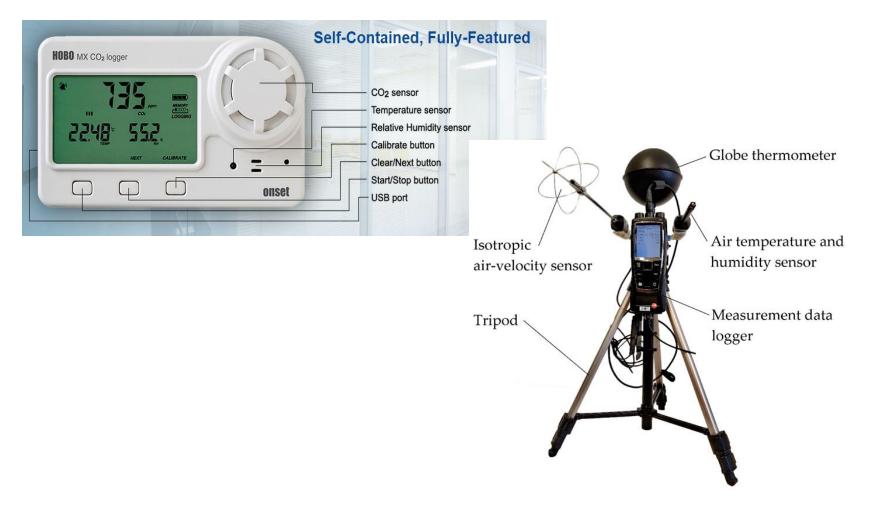
Simulations with DesignBuilder and Contam

- Energy consumption
- CO₂ emissions
- Thermal comfort

The target was to identify the correlation of ventilation rates and photocatalysis (ventilation is related to energy consumption).

Indirect reduction of energy consumption because of the ventilation rate reduction.

Indoor conditions measurement equipment


System	Measurements	Measurement equipment
DEMO HOUSES	Air temperature	Comfort and air quality conditions
	Relative Humidity	using testo 480 and the necessary sensor probes (temperature, radiant
	Air velocity	temperature, relative humidity, CO2,
	Radiant	air velocity, pmv/ppd)
	temperature	• HOBO MX1102 (temperature, relative
	PMV/PPD	humidity, CO2).
	CO ₂	The installation and methodology is
		based on the international standards ISO
		7726:1998 and ASHRAE 55

LIFEVISIONS

Indoor conditions data loggers

LIFEVISIONS

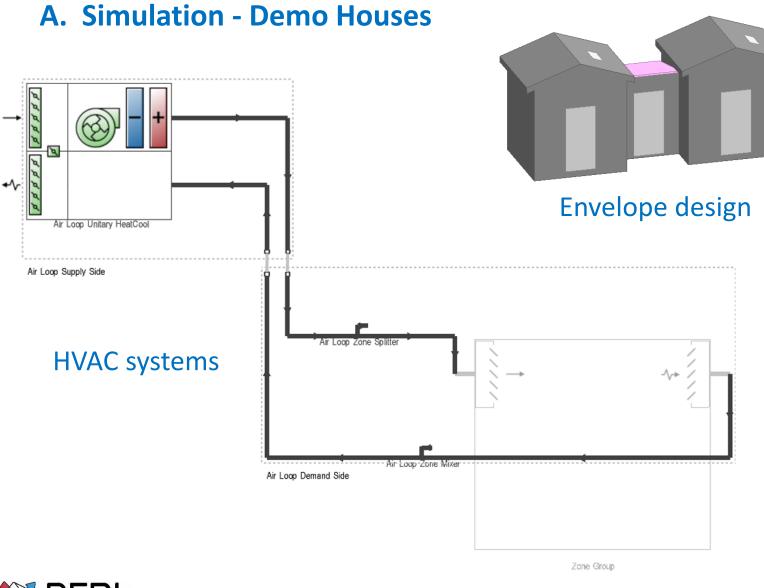
A. Simulation - Demo Houses

Parameters:

- Mechanical ventilation (ASHRAE 62.1)
- Natural ventilation
- \circ Photocatalysis

Output data:

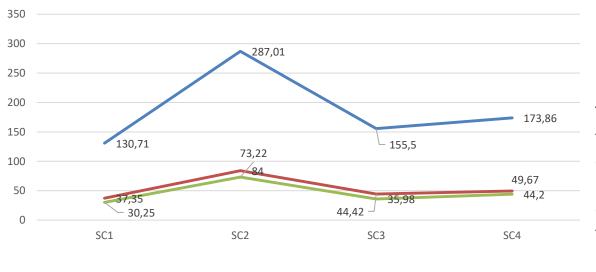
- Energy consumption
- CO₂ emissions
- NOx emissions



The project has received funding from the LIFE Programme of the European Union under GA number LIFE19 ENV/GR/000100

LIFEVISIONS

LIFE VISIONS


A. Simulation scenarios - Demo Houses

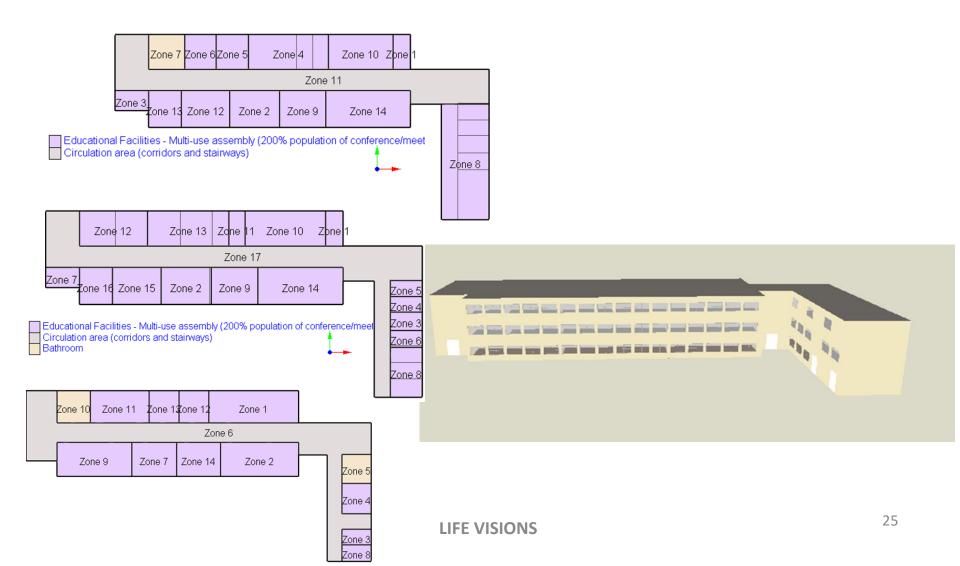
Scenario	Scenario description	Ventilation m3/h, Air changes per hour	Concentration NO,NO2,CO2	Pollutants reduction efficiency
Baseline	Conventional without photocatalysis and not adequate mechanical ventilation	17.57 m3/h, 0.74 ACH	NO:27µg/m3 NO2:32µg/m3 CO2:455 ppm	
1	Photocatalysis and mechanical ventilation	17.57 m3/h, 0.74 ACH	NO:10μg/m3 NO2:12.6μg/m3 CO2:455 ppm	NO:63% NO2:60.6%
2	Increased mechanical ventilation in order to accomplish the same emission reduction as with photocatalysis	151.2m3/h, 6.36 ACH	NO:10.7μg/m3 NO2:12.9μg/m3 CO2:400 ppm	NO:60.3% NO2:59.6%
3	Maximum of natural ventilation	72.68m3/h, 3 ACH	NO:14µg/m3 NO2:17µg/m3 CO2:447 ppm	NO:48% NO2:46.8%
4	Night ventilation	35.2m3/h, 1.5 ACH 7:00 p.m-17:00a.m. 151.2m3/h, 6.36 ACH	NO:15.1µg/m3 NO2:18.1µg/m3 CO2:419.4 ppm	NO:44.1% NO2:43.4%

A. Simulation results - Demo Houses

The issue is to find the scenario that can achieve the same emissions reduction as with photocatalysis with the least energy consumption in regards to ventilation.

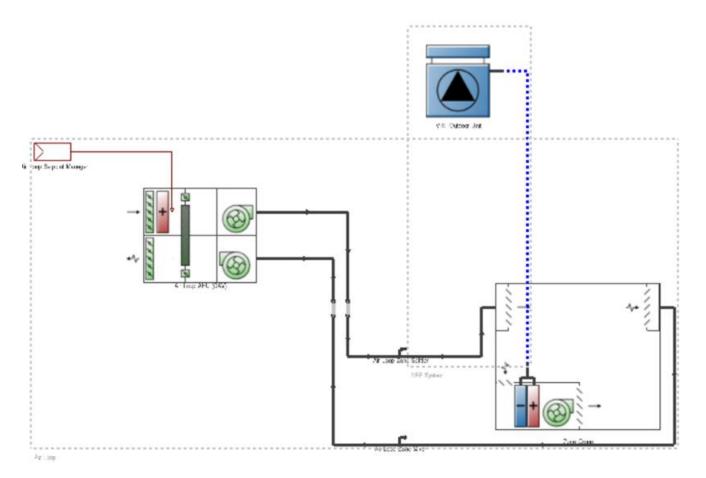
Cooling Loads (kWh)	—— Final Energy Conspumption (kWh)	CO2 Emissions (Kg)

	Cooling Loads (kWh)	Final Energy Conspumption (kWh)	CO2 Emissions (Kg)
SC1	130,71		
SC2	287,01	84	73,22
SC3	155,5	44,42	35,98
SC4	173,86	49,67	44,2



The project has received funding from the LIFE Programme of the European Union under GA number LIFE19 ENV/GR/000100

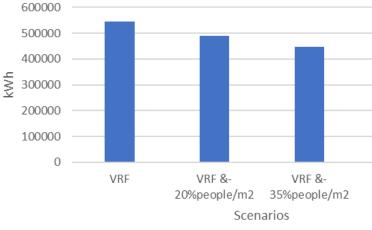
LIFEVISIONS


B. Simulation – Naval Academy

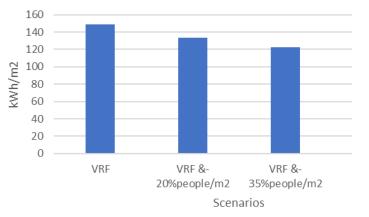
Educational Facilities - Multi-use assembly (200% population of conference/meel Circulation area (corridors and stairways) Bathroom

B. Simulation – Naval Academy

Naval academy-VRF (Variable Refrigerant Flow) system simulation



LIFE VISIONS

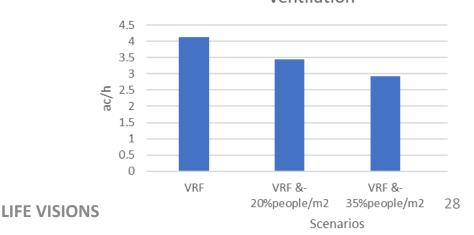


The project has received funding from the LIFE Programme of the European Union under GA number LIFE19 ENV/GR/000100

Total Energy

Energy Per Total Building Area

B. Simulation Results – Naval Academy


SC1 (without photocatalysis) the energy consumption reaches 544103.64 kWh and 236.76 kWh/m² of conditioned building area. Increased ventilation rate.

SC2 (with photocatalysis) and people density reduced by 20%.

Reduced people density – reduction to ventilation rate. Energy consumption reaches 488796.48 kWh and 212.69 kWh/m² of conditioned building area.

SC3 (with photocatalysis reduce more the people density).

Energy consumption reaches 447965.8 kWh and 194.93 kWh/m² of conditioned building area.

Key Results & Discussion

- There is a correlation of ventilation rates and photocatalysis (ventilation is related to energy consumption).
- The simulations determined significant energy consumption reduction compared to the conventional scenario (without photocatalysis) because of the ventilation rate reduction (given as a fact that we want specific ventilation rate to reduce pollutants concentration).
- The results in real scale application showed a correlation of ventilation rates and photocatalysis (ventilation is related to energy consumption). <u>The simulations determined about 11 – 22% energy</u> <u>reduction compared to the conventional scenario (without photocatalysis) because of the</u> <u>ventilation rate reduction.</u> The ventilation rate was determined by the occupancy in the photocatalytic scenarios.



LIFEVISIONS

THANK YOU!

https://lifevisions.gr/

